You're asking about a very specific chemical compound, **1-butyl-1-methyl-3-(12-oxo-7,8,9,10-tetrahydro-6H-azepino[2,1-b]quinazolin-2-yl)thiourea**. Let's break down why this might be important for research:
**Understanding the Compound:**
* **Thiourea:** The core of this molecule is thiourea, a functional group with sulfur and nitrogen. Thiourea derivatives often exhibit biological activity, including enzyme inhibition.
* **Azepino[2,1-b]quinazoline:** This complex ring structure is known for its presence in certain drugs. It can be modified to interact with specific biological targets.
* **Substituents:** The 1-butyl-1-methyl part indicates the presence of a butyl group (four carbons) and a methyl group (one carbon) attached to specific positions on the thiourea. These groups can influence the compound's properties, such as its solubility or how it interacts with biological systems.
**Potential Research Significance:**
Given the complex structure, this compound could be important for research in various fields:
* **Drug Discovery:** The combination of thiourea and the azepino[2,1-b]quinazoline scaffold suggests it might be a potential drug candidate. Researchers could explore its efficacy against specific diseases or conditions.
* **Enzyme Inhibition:** Thiourea derivatives are known for their ability to inhibit enzymes. This compound could be investigated for its ability to block the activity of specific enzymes involved in disease processes.
* **Biochemistry and Pharmacology:** Research could focus on understanding how this compound interacts with biological systems, including its absorption, distribution, metabolism, and excretion (ADME).
* **Materials Science:** While less likely, the compound could potentially exhibit interesting properties for applications in materials science, such as its ability to form self-assembled structures.
**Key Points:**
* **Specific Structure:** The exact structure of this compound is crucial for understanding its properties and potential applications.
* **Research Direction:** The specific research significance depends on the research goals and the properties of the compound that are being investigated.
* **Available Information:** To learn more about this compound's importance, you'd need to research publications, databases, or contact scientists who specialize in related fields.
**To understand the importance of this compound, you need further context. Knowing the specific research question, the biological target, or the desired application would help pinpoint why it's relevant.**
ID Source | ID |
---|---|
PubMed CID | 4074539 |
CHEMBL ID | 1361026 |
CHEBI ID | 114236 |
Synonym |
---|
CHEMDIV3_007721 , |
IDI1_025631 |
n-butyl-n-methyl-n'-(12-oxo-6,7,8,9,10,12-hexahydroazepino[2,1-b]quinazolin-2-yl)thiourea |
MLS000729539 |
smr000307816 |
CHEBI:114236 |
BRD-K39154399-001-01-2 |
HMS1494O21 |
1-butyl-1-methyl-3-(12-oxo-7,8,9,10-tetrahydro-6h-azepino[2,1-b]quinazolin-2-yl)thiourea |
3-butyl-3-methyl-1-{12-oxo-6h,7h,8h,9h,10h,12h-azepino[2,1-b]quinazolin-2-yl}thiourea |
AKOS001764168 |
HMS2719I09 |
CHEMBL1361026 |
Q27195633 |
Class | Description |
---|---|
quinazolines | Any organic heterobicyclic compound based on a quinazoline skeleton and its substituted derivatives. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, TYROSYL-DNA PHOSPHODIESTERASE | Homo sapiens (human) | Potency | 0.1413 | 0.0040 | 23.8416 | 100.0000 | AID485290 |
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 35.4813 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 3.9811 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 17.7828 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 0.7079 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
lethal(3)malignant brain tumor-like protein 1 isoform I | Homo sapiens (human) | Potency | 3.5481 | 0.0752 | 15.2253 | 39.8107 | AID485360 |
geminin | Homo sapiens (human) | Potency | 29.0929 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 8.9125 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 5.0119 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |